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Abstract- This study investigated the feasibility of predicting intrinsically caused trips (ICTs) in 

individuals with stroke. Gait kinematics collected from twelve individuals with chronic stroke, 

who demonstrated ICTs in treadmill walking, were analyzed. A prediction algorithm based on 

the outlier principle was employed. Sequential forward selection (SFS) and minimum-

redundancy-maximum-relevance (mRMR) were used separately to identify the precursors for 

accurate ICT prediction. The results showed that it was feasible to predict ICTs around 50-

260ms before ICTs occurred in the swing phase by monitoring lower limb kinematics during the 

preceding stance phase. Both SFS and mRMR were effective in identifying the precursors of 

ICTs. For 9 out of the 12 subjects, the paretic lower limb’s shank orientation in the sagittal plane 

and the vertical velocity of the paretic foot’s center of gravity were important in predicting ICTs 

accurately; the averaged area under receiver operating characteristic curve achieved 0.95 and 

above. For the other three subjects, kinematics of the less affected limb or proximal joints in the 

paretic side were identified as the precursors to an ICT, potentially due to the variations of 

neuromotor deficits among stroke survivors. Although additional engineering efforts are still 

needed to address the challenges in making our design clinically practical, the outcome of this 

study may lead to further proactive engineering mechanisms for ICT avoidance and therefore 

reduce the risk of falls in individuals with stroke.  

 

Keywords- Stroke rehabilitation, gait, fall prevention, trips, prediction  
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I. INTRODUCTION 

Stroke is a major health problem that leads to serious, long-term disability worldwide. Falls 

are common in persons with stroke due to altered gait patterns [1]. Gait alterations include, but 

are not limited to: decreased walking speed, reduced foot clearance, and spatiotemporal gait 

asymmetry [1]. A high risk of falling after stroke has been reported during  hospital stays and 

after discharge. The incidence of falls in inpatient settings has ranged from 14% to as high as 

64.5% [2]. Several reports have documented the incidence, risk factors, and consequences of 

falls for community-dwelling people with stroke. In this population, the incidence of one-time 

falls varies from 23% to 73%, with multiple fall rates ranging from 12% to 47% [3].  The 

consequences of falling may include hip fractures, soft tissue injuries, fear of falling, 

hospitalization, decreased mobility, and greater disability [2, 3]. Given the large population of 

people with stroke and the high risk of falling in this population, finding a solution to assist 

walking stability and prevent falls is needed.  

The risk factors that contribute to falls can be characterized as either extrinsic (e.g. 

environmental) or intrinsic (e.g. physiological impairments and disabilities) factors [4]. 

Identifying specific intrinsic factors for individuals with stroke is challenging because 

hemiparetic gait impairments can be dramatically different among individuals. Nevertheless, 

paretic joint kinematic patterns often include reductions in hip, knee, and ankle flexion during 

swing [5-7]. Importantly, reduced hip, knee, and ankle joint kinetic measures (e.g., moments and 

powers) during late stance and pre-swing have also been identified [8, 9] and are known to be 

related to swing phase dynamics [10]. The combination of these altered lower limb biomechanics 

is a functionally longer limb during swing, which challenges successful foot clearance [11]. Our 

previous study has shown that it is very common for individuals with stroke to naturally generate 
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unsuccessful foot clearances even while walking on a level surface [11]. These unsuccessful foot 

clearances caused by intrinsic abnormalities in neuromotor control during the late stance and 

early swing phase of gait (also called intrinsically-caused trips (ICT) in this study) are 

undesirable because they can contribute to stumbles and falls [1].  

Engineering solutions have been explored to prevent falls or reduce fall-related injuries in 

different populations. These solutions can be classified based on the timing of when the 

engineering system is in action. There are two critical events in a fall: a balance perturbation and 

an actual fall on the ground. One type of system focuses on the solutions after a fall has occurred 

to minimize the waiting time between a fall and the arrival of medical attention. Fall detection is 

essential in such systems, and can be measured using impact signals [12, 13] and orientations of 

body postures [14]. Clearly the action of such a system is too late to prevent injuries of 

individuals from a fall. In contrast, another type of engineering system provides reactive 

protective mechanisms, usually from an assistive device (e.g. exoskeleton [15] or prosthetics 

[16]), after a balance perturbation occurs but before the individual falls on the ground. These 

reactive systems intend to restore the users’ stability after a balance perturbation and protect the 

user from a fall. One of the key components in the system is a detector that accurately and 

promptly detects perturbations or the user’s stumbling in order to trigger the reactive 

mechanisms for fall prevention. Several approaches have been reported to detect the stumbling 

events, including using a reference template of thigh segmental angle and angular velocity [17], 

and measuring accelerometer and gyro signals from lower limb [18, 19]. In our group, a stumble 

detection system based on foot accelerometer data and lower limb surface muscle (EMG) signals, 

has been designed for powered lower limb prostheses [16]. Compared to the first type of systems 

that detect falls after they happen, the systems that provide pre-impact action may hold greater 
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potential to effectively reduce the fall risks and fall-related injuries. 

Clearly the earlier the protection action occurs, the better chance the individual has of 

avoiding a fall. However, very limited engineering efforts have been reported to prevent falls 

before the event of a balance perturbation. One critical question is whether or not the gait 

perturbation is predictable, (i.e. a gait perturbation can be predicted before it actually happens). 

For patients with stroke, unsuccessful foot clearances (i.e. balance perturbations) are often 

caused by intrinsic factors that alter gait kinematics and kinetics [5-7, 11]. This observation 

indicates that it might be possible to predict these ICTs and provide early, proactive (rather than 

reactive) fall prevention strategies via assistive devices (e.g. functional electrical stimulation of 

muscles, activation of exoskeletons).  Motivated by the need to reduce fall risks in individuals 

with stroke, this study explores practical engineering solutions to predict intrinsically caused 

trips in people with stroke. The outcomes of this study are expected to inform the future design 

of assistive devices that can eliminate ICT-caused stumbling and falls and therefore enhance the 

mobility and stability of individuals with stroke. 

II. METHODS 

A. Participants 

      This study was conducted with the approval of the Institutional Review Board (IRB) at the 

University of North Carolina at Chapel Hill and informed consent was obtained for all subjects. 

Data were collected from subjects with chronic hemiparesis at least six months post stroke from 

a larger study examining gait kinematics and kinetics during treadmill ambulation [20, 21]. 

Sensory motor dysfunction consistent with an ischemic or hemorrhagic unilateral brain lesion 

was observed in each subject. Subjects were excluded from this study if they required an ankle 

foot orthosis (AFO) for safe ambulation, or had any comorbidity that prevented unassisted 
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treadmill walking. Additionally, subjects were excluded if they had any history of falls, or 

balance deficits unrelated to the stroke (e.g. vestibular dysfunction).  

Twelve out of forty recruited subjects were observed to demonstrate ICTs in treadmill 

walking during the experiments. Data collected from these 12 subjects were used in this study. 

The demographic information of these subjects is summarized in Table I.  

B. Experimental Measurements and Protocol  

      Reflective markers were placed on the participants’ pelvis, thighs, shanks, and feet as 

described in [22]. Motion data from the lower limb was recorded using an 8-camera motion 

capture system (Vicon, Denver, CO, USA) at 120 Hz. Ground reaction forces (GRF) under both 

belts were sampled at 960 Hz. Marker trajectories and GRF data were low-pass filtered at 6Hz 

and 20Hz respectively. Segment orientations and joint angles were computed by Visual 3D (C-

Motion, Germantown, MD, USA).      

      During experiments, subjects were asked to walk for 20 minutes at a fixed speed on a dual 

belt instrumented treadmill (Bertec Corp., Columbus, OH, USA). Physical therapists monitored 

the walking session and selected a speed that the participant could maintain for the entirety of the 

session, targeting 70% of maximum heart rate or a score of 14 on the Borg Rating of Perceived 

Exertion Scale. To prevent a fall during walking, subjects wore a harness that did not provide 

unweighting or restrict lower limb movement. Use of treadmill hand rails was discouraged and 

use of assistive devices was not allowed during the walking session.  

C. Data Segmentation 

      All the collected data were manually segmented before analysis. Gait cycles with 

unsuccessful foot clearance were first identified when vertical GRF exceeded 10N during swing 
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phase on the paretic side. One good example is demonstrated in Figure 1 (left), in which the red 

curve indicated the presence of a vertical GRF when the unsuccessful foot clearance occurred in 

the swing phase. Unsuccessful foot clearance events were further sorted into ICTs and “scuffs”. 

“Scuff” was defined as the unsuccessful foot clearance event which did not elicit gait 

perturbation recovery reaction in the subject. We defined ICTs as naturally occurring 

unsuccessful foot clearances that elicited notable recovery reaction (i.e. elevating, lowering, or 

delayed lowering reaction) in the subjects. The reaction was reflected by the dramatic pattern 

change of the foot’s center of gravity in the vertical direction. An example of the foot’s center of 

gravity curve in the vertical direction in one subject during elevating reaction is demonstrated by 

the red curve in Figure 1 (right). Note that scuffs were not studied because they did not actually 

perturb the subject’s balance. Because our goal was to make early predictions of ICTs, we only 

analyzed data prior to ICTs. Our previous study has observed that the lower limb kinematics in 

the paretic side at the end of stance phase were significantly different between ICT and non-ICT 

steps [11]. Therefore in this study, we focused on the last 10% of the stance phase of the paretic 

leg (immediately prior to the toe-off preceding each ICT). Additionally, the data in the gait 

cycles with successful foot clearance (indicated as non-ICT in this study) were segmented and 

used for building and evaluating the predictive model. Due to the potential confounding effect of 

a trip recovery process over multiple gait cycles, we did not use the four gait cycles following 

any unsuccessful foot clearance event for analysis.  

D. Investigated Data Sources and Source Selection Analysis 

      We only considered kinematics as potential data sources for ICT prediction in this study 

because kinematic information is measurable in the community with wearable sensors. Sixty 

unique kinematic measurements from each leg were included in this study. These sources 



1534-4320 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2614521, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

 8 

included 9 segmental angles (Thighx, y, z, Shankx, y, z, Footx, y, z), 7 joint angles (Hipx, y, z, Kneex, 

Anklex, y, z), and angular velocities and accelerations derived from these segmental and joint 

angles. Wherein, x, y, and z represent sagittal plane, frontal plane and transverse plane, 

respectively. We also included measures of limb length (LLx,y,z), which were measured from the 

hip joint center to the center of gravity of the foot. Additionally, the foot’s center of gravity 

vertical position (FootCOG_z), velocity (FootCOG_z), and acceleration (FootCOG_z) were included 

as sources. The foot’s center of gravity was directly obtained from Visual 3D software. The 

elevation velocity and acceleration were derived from the first and second time derivative.  

     To find the most informative data sources for ICT prediction, a source selection analysis was 

performed on all the considered data sources. Two efficient and commonly used source selection 

approaches were used: a wrapper method and a filter method [23]. Wrapper methods require a 

pre-determined prediction algorithm to be in place to measure the discriminability of sources. 

One of the most common wrapper methods is sequential forward selection (SFS).  Filter methods 

use discriminating criteria, such as correlation coefficients [24] and mutual information [25], to 

rank sources. Minimum-redundancy-maximum-relevance (mRMR) is a type of discriminating 

criteria that simultaneously considers the redundancy and relevance of sources [25]. In our study, 

we used and compared two source selection methods:  SFS and mRMR. The source selection for 

accurate ICT prediction was conducted on the data collected from all the subjects and/or the data 

from each individual subject. In addition, we performed a one-way ANOVA with repeated 

measures to test for differences in ICT prediction performance across these two source selection 

methods. 

      The SFS algorithm was initialized with two data source sets: the selected set, A, which was 

initially empty; and the remaining set, B, which included all the considered data sources (i.e. 60 



1534-4320 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2614521, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

 9 

data sources). In the first iteration, each individual source was used for ICT prediction. The data 

source that yielded the best prediction performance was added into set A and removed from set B. 

In the following rounds, each source that remained in set B was combined with sources already 

selected in set A and evaluated for ICT prediction. The source that generated the highest 

prediction performance was selected and added into set A and removed from set B. Only one 

source was selected in each iteration and this procedure was repeated until all the data sources 

were selected. The sequence in which the sources were selected produced a rank of the sources 

in terms of their importance for ICT prediction.  

      To simultaneously maximize the relevance and minimize the redundancy among data sources, 

the mRMR approach selected data sources based on the mRMR score which was defined as:  

                                                   
WCBC

DDmRMR /                                                        (1) 

DBC represented the Euclidean distance [26] of data source (d) between two difference cases (i.e. 

ICT and non-ICT); The dimension of data source (d) was 𝑘 × 4, in which k represented the 

number of gait cycles that contained ICTs /non-ICTs. 4 was the number of the third-order 

polynomial features. DWC denoted the Euclidean distance of data source (d) within the same case 
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where n was the number of gait cycles containing ICT; m was the number of gait cycles 

containing non-ICT; and dist represented the Euclidean distance. Sources were ranked based on 
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the descending order of mRMR scores for each individual subject. The larger the mRMR score 

was, the more useful the data source was for ICT prediction. When mRMR was applied across 

multiple subjects, sources were ranked by calculating the frequency of occurrence of each 

possible source in the top 15 sources across each subject of interest. 

E. ICT Prediction Algorithm 

Mahalanobis distance (M-distance) was used to distinguish gait cycles with or without ICTs 

in this study. The M-distance based algorithm was used because (1) it is a widely used algorithm 

for prediction/detection problem [27], (2) the computational efficiency of this algorithm makes it 

practical for real-time implementation, and (3) this prediction strategy only requires a normal 

dataset (i.e. non-ICTs) to build the predictive model in real application, which enhances its 

practical value. Features that represent the characteristics of each data source were extracted 

from each individual source. In this study, a set of third-order polynomial regression coefficients 

[𝑎0, 𝑎1, 𝑎2, 𝑎3] were estimated based on Equation (4) using ordinary least squares estimation and 

were used as the features in each data source [28].  

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3                        (4) 

where x represents the time point and y denotes the corresponding kinematic data value. The 

feature set from each data source was then concatenated into one feature vector for prediction. 

The data associated with successful foot clearance (i.e. non-ICT) were used to build the normal 

model. The M-distance from a new observation to the normal model was calculated and 

compared to a threshold to predict an ICT. The threshold was determined based on the maximum 

value of M-distance derived from observations in the normal model multiplied by a scale factor. 

Different prediction thresholds were tested to generate the receiver operating characteristic (ROC) 



1534-4320 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2614521, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

 11 

curve. The optimal threshold was chosen based on the ROC curve to guarantee high prediction 

accuracy and low false alarm rate. 

F. Evaluation of Prediction Performance 

     Two evaluation metrics were used to quantify the prediction performance: (1) the area under 

the ROC curve (AUROC) [29], and (2) prediction time. A ROC curve is a graph where the y-

axis represents the prediction accuracy and the x-axis denotes the false alarm rate. AUROC is a 

metric that indicates overall prediction performance, of which higher value means better 

performance. The prediction accuracy measures the percentage of correctly predicted ICTs in the 

total number of ICTs. The false alarm rate quantifies the ratio of the successful foot clearances 

that were falsely predicted as ICTs to the total number of the successful foot clearances. The 

prediction time was defined as the time elapsed from the moment that an ICT was correctly 

predicted to the time that the ICT actually happened. A positive time value indicates that the ICT 

was predicted before the ICT occurred.  

      A cross-validation process was used to generate ROC curves. Because the occurrence of ICT and 

non-ICT gait cycles varied across subjects, we randomly selected 110 non-ICT gait cycles for 

each subject. Ten non-ICT gait cycles were left out as catch data, and the remaining 100 non-ICT 

trials were used as normal data. Then, a new rotation was initiated using 10 new catch data and a 

new normal dataset. A total of 11 rotations were performed, using all 110 non-ICT cycles as 

catch data just once. This cross validation process was repeated 30 times, randomly selecting 110 

new non-trip trials, and repeating analysis to get an average AUROC for each source to reduce 

noise in the data.  

III. RESULTS 
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A. Generalized Source Selection Results Using Sequential Forward Selection Method 

     The sequential forward selection algorithm was initially applied on the data collected from the 

paretic limbs in all 12 subjects. In each selection iteration, the data source, which in combination 

with previously selected data sources generated the highest averaged value of AUROC across all 

the subjects, was defined as the important data source for ICT prediction. It was observed that for 

3 out of 12 subjects (Subject 03-05), AUROC values were significantly lower if the data sources 

selected based on all 12 subjects were used for ICT prediction. Therefore, in this study, these 

three subjects were treated as outlier subjects in the following analysis. The aforementioned 

forward selection procedure was repeated on the data collected from the remaining 9 subjects. 

The sources selected based on the averaged results across these 9 subjects was defined as the 

generalized sources in this study. Figure 2 shows the top 6 generalized sources. The black curve 

indicated the averaged AUROC value across the 9 subjects, with a higher value indicating better 

prediction performance. It can be seen that as the number of selected data sources increased, the 

prediction performance initially improved dramatically at the beginning and then gradually 

saturated or even decreased. It is true except for Subject 11, in which adding the second data 

source (i.e. FootCOG_z) decreased the prediction performance. It is because the sources were 

selected based on the average value of AUROC across all the 9 subjects, which however may not 

be optimized for Subject11. For this subject, FootCOG_z may carry more information redundancy 

and less prediction relevance. Therefore, adding this type of data source may even worsen the 

prediction performance. We used the value of 0.95 as a threshold, which selected two data 

sources as the most informative sources, including the paretic shank angle in the sagittal plane 

(i.e. Shankx) and the elevation velocity of the paretic foot’s center of gravity of (i.e. FootCOG_z).  
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     The ROC curve of ICT prediction using the top 2 data sources generalized from 9 subjects 

was shown in Figure 3. The top left corner of the ROC curve is the point where prediction 

accuracy reaches 100% and false alarm rate equals 0%, which represents an ideal prediction 

performance. The closer the ROC curve gets to the top left corner, the better the prediction 

performance is overall. The range of ROC curves across all 9 subjects was highlighted in the 

shaded area.  

B. Source Selection Results Using Different Methods: SFS vs mRMR 

      By using mRMR method, the shank angle in the sagittal plane (i.e. Shankx) was the most 

frequently selected data source (8 out of 9 subjects), and therefore was identified as the most 

important precursor for ICT prediction. It is noteworthy that this source was also selected as the 

top one precursor by SFS approach, which may imply that this selected data source was valid 

and robust. The height of the paretic foot’s center of gravity (i.e. FootCOG_z), the foot angle in the 

sagittal plane (i.e. Foot_x), and the vertical limb length (i.e. LLz) were tied in the second place of 

source ranking, which were selected in 7 out of 9 subjects. However, FootCOG_z was identified as 

the second important source by mRMR, because it produced a slightly higher AUROC value 

than the other two sources. The prediction performance using these top 2 sources selected by 

mRMR (i.e. Shankx and FootCOG_z) was compared to the performance derived from SFS selected 

sources (i.e. Shankx and FootCOG_z), as shown in Figure 4. The averaged AUROC value across 9 

subjects based on SFS sources yielded a slightly better performance than the one based on 

mRMR. However, the difference was not statistically significant based on one-way ANOVA 

with repeated measures (p>0.05). Since the data sources selected by SFS yielded a slightly better 

performance, only the sources selected based on SFS will be used and analyzed in the following 

sections. 
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C. Customized Source Selection Results for Outlier Subjects 

      The informative data sources for outlier subjects (Subjects 03-05) were customized and 

investigated separately using the SFS algorithm. In addition, for these three subjects, the data 

sources on the contralateral side were also included for consideration. Table II listed the top 2 

customized data sources for Subject 03-05 using the SFS algorithm, in comparison to the sources 

generalized from other 9 subjects. The selected sources from Subject 03-05 were very different 

from the generalized sources determined based on the averaged results across the other 9 subjects. 

For example, kinematics of the less affected limb (e.g. FootCOG_z and Footx on the contralateral 

side in Subject 05) or proximal joints in the paretic lower limb (e.g. LLz in Subject 03 that 

represents hip and knee kinematics) were identified as the precursors. 

The ROC curve of ICT prediction performance based on the generalized and customized 

sources for Subjects 03-05 is shown in Figure 5. The ROC curves of the customized sources 

(indicated in solid lines) are closer to the left top corner than the generalized sources (represented 

in dotted lines), which indicates that the customized sources generated better prediction 

performance than the generalized sources for these three subjects. The performance improvement 

was further highlighted in Figure 6. Figure 6 compared the AUROC using the generalized and 

customized sources. By using the customized sources, the ICT prediction performance was 

significantly improved for these three outlier subjects. For example, in Subject 05, the AUROC 

value was increased approximately from 0.45 to 0.9 by using the customized sources. 

D. ICT Prediction Time 

     The elapsed time between the moment that the ICT was predicted and the moment that the 

foot actually made contact with the ground was calculated for all 12 subjects and summarized in 
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Table III. Across the 12 subjects, the mean value of prediction time ranged from 49.7ms to 

260ms. The positive value indicated that the ICT event was predicted before the trip happened. 

IV. DISCUSSION 

This study addresses an important challenge in fall prevention for individuals with stroke. 

For stroke survivors, a trip during the swing phase of gait caused by intrinsic neuromotor deficits 

(i.e. ICT) are common, which can lead to balance instability, stumbling, and even falls. 

Importantly, our previous work suggested that ICTs during swing phase of gait are caused by 

movement abnormalities initiated during the stance phase [11]. Existing engineering efforts 

usually attempt to detect tripping events after gait perturbations; the prediction of trips before 

they happen has not been demonstrated. In this study, we showed that it was feasible to predict 

naturally occurring tripping events during the swing phase of gait in stroke survivors by 

monitoring only the kinematics of the lower limbs during the preceding stance phase. The early 

prediction of the intrinsically caused tripping events may lead to further proactive engineering 

mechanisms for ICT avoidance and therefore reduced the risks of fall in individuals with stroke.   

Probably the most exciting result in this study was that only two data sources were needed 

for accurate ICT prediction. We found that the sagittal plane orientation of the shank and the 

elevation velocity of the foot’s center of gravity during late stance phase were critical for 

preparing foot clearance in swing. These sources have both been well known to provide 

important information about gait transitions [30]. Interestingly, our results did not identify joint 

kinematics as potential precursors of ICTs. Previously, joint kinematics, rather than individual 

segmental kinematics, have been attributed to minimum foot clearance or increases in limb 

length [31]. Instead, we observed that variation of two sources of segmental kinematics became a 

precursor of ICT in the majority (9 of 12) of the subjects with stroke in this study. Additionally 
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these two data sources are measurable via existing wearable sensors. For example, a gyro sensor 

has been used in commercial functional electrical stimulation (FES) devices (WalkAide, 

Innovative Neurotronics, Inc., Austin, TX, USA) to track shank orientation for FES activation. 

The foot motion can be tracked by an inertia-measurement unit that has been used in tracking the 

position and acceleration of prosthetic foot (Biom, BionX Medical Technologies, Inc., USA). 

Hence, our designed ICT predictor can be both wearable and practical. 

To find the precursors of ICTs, two different source selection approaches (i.e. SFS and 

mRMR) were employed. The searching results showed that both approaches selected the 

orientation of the shank in the sagittal plane as the most important precursor for ICT prediction. 

Although the second selected source (i.e. FootCOG_z for SFS and FootCOG_z for mRMR) varied 

between SFS and mRMR, both of these two sources were closely related to the motion of the 

foot’s center of gravity. These observations indicated that both SFS and mRMR were effective in 

identifying the precursors of ICTs. By using the top 2 precursors selected by SFS, the ICT 

predictor yielded a slightly higher area under the ROC curve than the one selected based on 

mRMR (as shown in Figure 4). It was because SFS, as a wrapper method, depended on a 

predetermined predictive algorithm and selected the data sources particularly based on that 

algorithm’s performance. In contrast, mRMR was not tuned to a specific predictive algorithm, 

and therefore gave slightly lower prediction performance. However, mRMR is suggested for 

identifying informative sources for ICT prediction in the future if no specific prediction model is 

defined. In addition, mRMR is more computationally efficient than exhaustive searching 

methods.   

One of the inherent challenges associated with mobility research in stroke survivors is the 

large variation in recovery patterns across individuals [5-7]. In this study, we also observed that 
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three subjects showed entirely different sources for ICT prediction. The results derived from the 

customized data source selection for these 3 subjects implied that the kinematics in the non-

paretic limb (non-tripping leg) and/or proximal joints of the paretic side contributed to failed 

endpoint clearance in walking. This result was consistent with previous studies that identified 

deficits in proximal joint control [31] or contralateral compensations [32], both of which could 

contribute to an instance of unsuccessful foot clearance. This result implies that an assistive 

technology that is useful for a majority of stroke patients might not necessarily function for the 

entire patient population. Personalized design might be a solution. However, a personalized 

design might not be cost-effective due to the need for different sensors and components.   

The engineering design in this study is practical and could be potentially useful for different 

assistive devices. First, as aforementioned, the data sources required for ICT prediction are 

measurable by existing wearable sensors. Second, the outlier designed in this study only requires 

the non-ICT gait cycles to calibrate the discriminant thresholds for each individual in real 

application. This is much more practical than many detection/prediction methods that require 

many ICT samples to build the threshold. Our designed ICT prediction can be applied in 

different assistive devices, such as an FES device or an exoskeleton, to correct gait in time for 

ICT avoidance. For example, current FES systems assist the ankle and/or knee motion during 

every gait cycle to avoid unsuccessful foot clearance in gait. It is not only power consuming in 

the device, but also elicits muscle fatigue [33]. In addition, the continuous use of electrical 

stimulation in individuals with adequate control of the joint might enable a learned disuse of 

stimulated muscles. Our approach could provide an additional option for the FES device to 

become active only when an ICT is predicted. Therefore, assisting the affected lower limb during 

terminal stance may be effective at avoiding ICTs and consequently falls in individuals with 
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stroke. However, to make this design feasible for FES device to prevent ICTs, several research 

questions still need to be answered, such as how long it takes for FES devices to generate 

effective prevention reactions and how much dorsiflexion in ankle is needed for successful foot 

clearance. The choice of stimulation parameters, such as the frequency, pulse width/duration, 

duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, 

and muscle group activated, is worth further investigation. In addition, the trade-off between the 

force generated by electrical stimulation and the user’s comfort level and safety should be taken 

into consideration during the application. 

Despite the promising results obtained in this study, additional research efforts are still 

necessary in order to translate the technology to the end users. First, the research conclusion can 

be strengthened if the testing can be carried out in realistic environment. Our next research step 

is to implement our ICT predictor in real-time and integrate this system with an assistive device. 

A relevant research question is whether the reported prediction time (i.e. ~50-260 ms) is 

sufficient for assistive devices to successfully execute trip prevention actions. In addition, we are 

interested in investigating other ICT prediction precursors more in advance of trips (e.g. in the 

early stance phase). The successful identification of these earlier precursors could save extra time 

for avoidance of the trips. Also, the mechanism of the action for gait correction after prediction 

of an ICT has not been determined. We plan to design different control mechanisms to further 

enhance the stability in locomotion and prevent falls in stroke survivors in our future study. 

V. CONCLUSIONS 

      This study aimed to identify the precursors of ICTs and explore engineering solutions to 

predict ICTs in individuals with stroke. To do this, gait kinematics collected from twelve 

individuals with chronic stroke, who demonstrated ICTs in treadmill walking, were captured and 



1534-4320 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2614521, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

 19 

analyzed. An ICT prediction algorithm based on outlier principle was employed. The results of 

this study demonstrated that it was feasible to predict ICTs before they occurred in the swing 

phase. For the nine out of twelve subjects, the shank orientation in the sagittal plane and the 

elevation velocity of foot’s center of gravity from the paretic lower limb provided sufficient 

information for accurate ICT prediction. The ICTs in the other three stroke patients were 

attributed to the motor deficits in the non-paretic limb or proximal joints in the paretic limb. The 

outcomes of this study may inform future design of proactive mechanism in assistive devices for 

ICT and therefore fall prevention in individuals with stroke. 
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TABLE I 
  

Subject 

Number 
Age Gender 

Height 

(inches) 

Weight 

(lbs) 

Time 

since 

Stroke 

(month) 

Involved 

Side 

Overground 

Walking 

Speed (m/s) 

Fugl-

Meyer 

Score 

01 54 M 71.5 185 20 R 1.02 25 

02 81 F 63 115 18 R 0.47 24 

03 57 M 70 175 31 R 0.56 28 

04 60 M 74 224 9 R 0.94 26 

05 60 F 66 148 222 L 1.15 31 

06 41 M 75 205 6 R 0.53 22 

07 71 M 63 209 8 L 0.78 28 

08 44 M 70 145 43 L 0.68 21 

09 53 M 71 165 37 L 1.11 27 

10 44 F 64 189 59 L 0.49 16 

11 53 F 66 144 19 R 1.23 27 

12 48 F 68 215 48 L 0.51 23 
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TABLE II 
  

Source Rank 
Generalized Customized 

9 Subjects  Subject 3 Subject 4 Subject 5 

Primary Source Shankx  LLz Ankley C FootCOG_z” 

Secondary 

Source 
FootCOG_z  C Thighx FootCOG_z C Footx 

  

Note: C represents contralateral side. 



1534-4320 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2614521, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

 31 

 

 

 

 

 

 

 

 

TABLE III 
 

Subject Number 
Mean of ICT 

Prediction Time 

(ms) 

Standard 

Deviation of 

Prediction Time 

(ms) 

Number of ICTs 

01 104.1 25.6 118 

02 118.4 35.5 19 

03 133.3 33.9 9 

04 76.3 19.2 19 

05 260.0 10.0 3 

06 220.0 0 2 

07 115.0 21.2 2 

08 49.7 10.2 29 

09 120.0 34.6 3 

10 120.0 28.3 2 

11 135.0 7.1 2 

12 60.0 10.0 3 

 


